Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xin Qiang Wang,* Wen Tao Yu, Dong Xu and Guang Hui Zhang

State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China

Correspondence e-mail:
xqwang@icm.sdu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.030 \AA$
R factor $=0.041$
$w R$ factor $=0.081$
Data-to-parameter ratio $=10.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Polymeric bis(N-methylformamide)tetrathiocyanatocadmium(II)mercury(II)

The title complex, poly[bis(N-methylformamide)tetra- μ thiocyanatocadmium(II)mercury(II) $], \quad\left[\mathrm{CdHg}(\mathrm{NCS})_{4}\left(\mathrm{C}_{2} \mathrm{H}_{5}-\right.\right.$ $\left.\mathrm{NO})_{2}\right]_{n}$, contains slightly distorted octahedral $\mathrm{CdN}_{4} \mathrm{O}_{2}$ and tetrahedral HgS_{4}. The $\mathrm{Cd}^{\mathrm{II}}$ atom is coordinated by the N atoms of four SCN groups and O atoms of two N -methylformamide ligands in a cis orientation. The $\mathrm{Hg}^{\mathrm{II}}$ atom is coordinated by S atoms of one independent and three symmetry-related SCN groups. The two metal atoms, viz. $\mathrm{Cd}^{\mathrm{II}}$ and $\mathrm{Hg}^{\mathrm{II}}$, are connected by an $-\mathrm{S}=\mathrm{C}=\mathrm{N}-$ bridge, forming an infinite three-dimensional network.

Comment

Second-order non-linear optical (SONLO) materials capable of efficient frequency conversion of infrared or visible laser radiation to blue-violet or ultraviolet wavelengths are of considerable interest in high-density optical data storage, medical diagnosis, photolithography, underwater communications, laser displays, etc. Materials with large second-order optical non-linearities, transparency at all wavelengths involved and stable physicochemical performance are needed in order to realise many of these applications (Long, 1995; Zhang et al., 2004).

(I)

Cadmium mercury thiocyanate (CMTC) consists of flattened CdN_{4} and HgS_{4} tetrahedra (Yuan et al., 1997) and its two reported Lewis-base adducts (Zhou et al., 2000; Guo et al., 2001) consist of distorted $\mathrm{CdN}_{4} \mathrm{O}_{2}$ octahedra and HgS_{4} tetrahedra. All of them exhibit good SONLO effects and wide transparency wavelength regions. To continue this work, the title complex, (I), an N-methylformamide (NMF) adduct of CMTC, has been prepared. The crystal structure of an NMF adduct of cobalt mercury thiocyanate, bis(N-methylformamide)tetrakis(thiocyanato)cobalt(II)mercury(II), was reported nearly 20 years ago (Kinoshita \& Ouchi, 1986). It crystallizes in a non-centrosymmetric space group, but unfortunately the low energy $d-d$ transitions present in it due to the Co^{2+} ion are normally observed in the visible light region, which limits its SONLO usefulness. Compound (I) is

Received 11 March 2005
Accepted 13 May 2005
Online 21 May 2005

Figure 1
A fragment of the polymeric structure of (I), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Atoms $\mathrm{S} 2 A, \mathrm{~S} 3 A$ and $\mathrm{S} 4 A$ are at the symmetry positions $\left(x-\frac{1}{2}, \frac{3}{2}-y, z\right),\left(1-x, 2-y, z+\frac{1}{2}\right)$ and $(x, 1+y, z)$, respectively.

Figure 2
Packing diagram for (I), showing the three-dimensional network.
isostructural with it. However, compound (I) has many better characteristics, such as high SONLO effects and a wide optical transparency range, and it is very easy to grow large high optical quality single crystals.

In the structure of (I) (Fig. 1), each $\mathrm{Cd}^{\mathrm{II}}$ atom is coordinated by four N atoms belonging to SCN groups and by two O atoms of NMF ligands in a cis orientation. The resulting hexacoordinated $\mathrm{Cd}^{\mathrm{II}}$ centre exhibits slight distortions from ideal octahedral geometry. The $\mathrm{Cd} 1-\mathrm{N} 2$ and $\mathrm{Cd} 1-\mathrm{N} 3$ bond lengths [2.328 (16) and 2.316 (18) Å, respectively] are longer than the $\mathrm{Cd} 1-\mathrm{N} 1$ and $\mathrm{Cd} 1-\mathrm{N} 4$ distances [2.281 (16) and 2.286 (15) A \AA. All of them are shorter than the sum of the ionic radii ($2.41 \AA$; Shannon, 1976) and longer than the sum of the single-bond covalent radii ($2.23 \AA$; Pauling, 1960), which indicates that the $\mathrm{Cd}-\mathrm{N}$ bonds have intermediate covalent and ionic character. The $\mathrm{Cd} 1-\mathrm{O} 1$ and $\mathrm{Cd} 1-\mathrm{O} 2$ bond lengths [2.311 (10) and 2.286 (12) A., respectively] are close to the sum
of the ionic radii ($2.30 \AA$; Shannon, 1976). The values are normal compared with those reported in other similar complexes (Zhou et al., 2000; Guo et al., 2001; Wang et al., 2002). The $\mathrm{O} 1-\mathrm{Cd}-\mathrm{O} 2$ bond angle is $87.7(4)^{\circ}$. The bond angles (between adjacent atoms) $\mathrm{O}-\mathrm{Cd}-\mathrm{N}$ and $\mathrm{N}-\mathrm{Cd}-\mathrm{N}$ are in the ranges 84.4 (4)-94.4 (6) and 89.1 (6)-95.8 (6) ${ }^{\circ}$, respectively, and deviate slightly from the ideal octahedral angle of 90°. The other three bond angles, namely $\mathrm{O} 1-\mathrm{Cd} 1-$ $\mathrm{N} 4, \mathrm{O} 2-\mathrm{Cd} 1-\mathrm{N} 1$ and $\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{N} 3$, are close to 180° (Table 1).

Each $\mathrm{Hg}^{\text {II }}$ centre is tetrahedrally coordinated by four S atoms of SCN ligands. The tetrahedra are slightly deformed, with $\mathrm{Hg}-\mathrm{S}$ bond lengths in the range 2.524 (4)-2.576 (5) \AA, averaging $2.540 \AA$, a little longer than the sum of the singlebond covalent radii ($2.52 \AA$ A ; Pauling, 1960). The $\mathrm{S}-\mathrm{Hg}-\mathrm{S}$ bond angles [range $101.26(16)-117.8(2)^{\circ}$] deviate significantly from the ideal tetrahedral angle.

The $\mathrm{C}-\mathrm{N}-\mathrm{Cd}$ angles [range $161.2(16)-171.5(16)^{\circ}$] are close to 180°, while the $\mathrm{C}-\mathrm{S}-\mathrm{Hg}$ angles [range 94.1 (5)$98.7(6)^{\circ}$] are significantly smaller than 180°, exhibiting significant bending. The $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{S}$ bond lengths are slightly shorter than the accepted triple-bond length of $1.16 \AA$ and the normal single bond-length of $1.81 \AA$, respectively. The SCN groups are quasi-linear, all the $\mathrm{N}-\mathrm{C}-\mathrm{S}$ angles being nearly equal to 180°. The striking feature of these kinds of complexes is that the $-\mathrm{S}=\mathrm{C}=\mathrm{N}-$ bridges, which connect the two metals, form infinite two- or three-dimensional networks; a three-dimensional network is formed in (I) (Fig. 2). The macroscopic non-linear susceptibility of (I) may be related to microscopic hyperpolarizabilities of the dipolar SCN^{-}ions, and octupolar distorted $\mathrm{CdN}_{4} \mathrm{O}_{2}$ octahedra and HgS_{4} tetrahedra (Zyss \& Ledoux, 1994). Such a special infinite three-dimensional network gives a large polarization and can induce a great macroscopic non-linearity. The second harmonic generation (SHG) effect of crystals of (I) was studied by Kurtz \& Perry (1968) and found to be nearly the same as that of urea. The optical transmission of a crystal of (I) was measured by a Hitachi U-3500 spectrophotometer and it was found that the UV transparency cutoff is as low as about 360 nm .

Experimental

An NMF solution (15 ml) of CMTC ($5.45 \mathrm{~g}, 10 \mathrm{mmol}$) was added slowly to water (25 ml) with stirring at room temperature. After a while, compound (I) was precipitated. The crystals used for the X-ray structure analysis were obtained by slow cooling of a solution in NMF and water $(2: 3, v / v)$.

Crystal data

$\left[\mathrm{CdHg}(\mathrm{NCS})_{4}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}\right)_{2}\right]$

$M_{r}=663.45$
Orthorhombic, Pna2 ${ }_{1}$
$a=16.244$ (2) \AA
$b=7.7670$ (8) \AA
$c=15.3043$ (19) \AA
$V=1930.9$ (4) \AA^{3}
$Z=4$
$D_{x}=2.282 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 57 reflections
$\theta=4.8-12.5^{\circ}$
$\mu=9.49 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.18 \times 0.16 \times 0.13 \mathrm{~mm}$

Data collection

Bruker $P 4$ diffractometer	$R_{\text {int }}=0.038$
ω scans	$\theta_{\max }=26.0^{\circ}$
Absorption correction: ψ scan	$h=-1 \rightarrow 20$
$\quad(X S C A N S ;$ Bruker, 1996$)$	$k=-9 \rightarrow 1$
$T_{\min }=0.191, T_{\max }=0.290$	$l=-18 \rightarrow 1$
2617 measured reflections	3 standard reflections
2129 independent reflections	every 97 reflections
1497 reflections with $I>2 \sigma(I)$	intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.081$
$S=0.97$
2129 reflections
201 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0314 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.63 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.88 \mathrm{e}^{-3}$
Extinction correction: SHELXTL
Extinction coefficient: 0.00277 (15)
Absolute structure: Flack (1983),
151 Friedel pairs
Flack parameter $=0.42(2)$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Hg} 1-\mathrm{S} 2^{\text {i }}$	2.524 (4)	N1-C1	1.14 (2)
$\mathrm{Hg} 1-\mathrm{S} 1$	2.528 (5)	N2-C2	1.14 (2)
$\mathrm{Hg} 1-\mathrm{S} 4^{\text {ii }}$	2.531 (5)	N3-C3	1.13 (2)
$\mathrm{Hg} 1-\mathrm{S}^{\text {iii }}$	2.576 (5)	N4-C4	1.149 (18)
$\mathrm{Cd} 1-\mathrm{N} 1$	2.281 (16)	C2-S2	1.649 (17)
$\mathrm{Cd} 1-\mathrm{O} 2$	2.286 (12)	C3-S3	1.643 (19)
Cd1-N4	2.286 (15)	C4-S4	1.635 (17)
$\mathrm{Cd} 1-\mathrm{O} 1$	2.311 (10)	$\mathrm{S} 3-\mathrm{Hg} 1{ }^{\text {iv }}$	2.576 (5)
Cd1-N3	2.316 (18)	$\mathrm{S} 4-\mathrm{Hg} 1^{\text {v }}$	2.531 (5)
$\mathrm{Cd} 1-\mathrm{N} 2$	2.328 (16)	$\mathrm{S} 2-\mathrm{Hg} 1^{\text {vi }}$	2.524 (4)
S1-C1	1.646 (19)		
$\mathrm{S} 2^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{S} 1$	117.8 (2)	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{N} 2$	84.4 (4)
$\mathrm{S} 2^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{S} 4^{\text {ii }}$	110.0 (2)	$\mathrm{N} 4-\mathrm{Cd} 1-\mathrm{N} 2$	89.1 (6)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 4^{\text {ii }}$	104.11 (19)	$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 2$	87.3 (5)
$\mathrm{S} 22^{\text {i }}-\mathrm{Hg} 1-\mathrm{S} 3^{\text {iii }}$	101.26 (16)	$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{N} 2$	174.8 (6)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 3{ }^{\text {iii }}$	109.8 (2)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Hg} 1$	95.6 (7)
$\mathrm{S} 4{ }^{\text {iii }}-\mathrm{Hg} 1-\mathrm{S} 3{ }^{\text {iii }}$	114.33 (17)	C1-N1-Cd1	171.5 (16)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 2$	175.7 (6)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Cd} 1$	165.9 (15)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 4$	93.3 (6)	C3-N3-Cd1	170.6 (17)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{N} 4$	85.8 (5)	C4-N4-Cd1	161.2 (16)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 1$	93.0 (5)	N1-C1-S1	177.5 (18)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 1$	87.7 (4)	N2-C2-S2	176.1 (18)
N4-Cd1-O1	172.9 (5)	N3-C3-S3	176.5 (16)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 3$	89.8 (5)	N4-C4-S4	177.7 (18)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{N} 3$	94.4 (6)	$\mathrm{C} 3-\mathrm{S} 3-\mathrm{Hg} 1^{\text {iv }}$	94.1 (5)
$\mathrm{N} 4-\mathrm{Cd} 1-\mathrm{N} 3$	95.8 (6)	$\mathrm{C} 4-\mathrm{S} 4-\mathrm{Hg} 1^{v}$	98.7 (6)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 3$	87.6 (5)	$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Hg} 1^{\text {vi }}$	95.4 (6)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 2$	91.4 (6)		
Symmetry codes: (i) $x-\frac{1}{2}, \frac{3}{2}-y, z$; (ii) $x, 1+y, z$; (iii) $1-x, 2-y, \frac{1}{2}+z$; (iv) $1-x, 2-y, z-\frac{1}{2}$; (v) $x, y-1, z ;$ (vi) $\frac{1}{2}+x, \frac{3}{2}-y, z$.			

H atoms were positioned geometrically ($\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-$ $\mathrm{H}=0.93$ or $0.96 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}$ (carrier atom) for methyl H atoms and $1.2 U_{\text {eq }}$ (carrier atom) for other H atoms. Atoms C6 and C8 of the NMF groups possess large displacement parameters. Since no suitable disorder model was found, their displacements were approximated to isotropic behaviour. Also, restraints were applied to some bond lengths in the NMF groups. The structure is a partial inversion twin, as indicated by the value of the Flack (1983) parameter. The poor precision of the geometric parameters is due to the high thermal motion of some of the atoms at room temperature.

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: $S H E L X T L$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

This work is supported by an '863' grant (No. 2002AA313070) of the National Advanced Materials Committee of China (NAMCC), and by grants (Nos. 60476020, 60377016 and 50272037) from the National Natural Science Foundation of China (NNSFC).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1996). XSCANS. Version 2.2. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Guo, S. Y., Xu, D., Yang, P., Yu, W. T., Lu, M. K., Yuan, D. R., Yang, Z. H., Zhang, G. H., Sun, S. Y., Wang, X. Q., Zhou, M. \& Jiang, M. H. (2001). Cryst. Res. Technol. 36, 609-614.
Kinoshita, H. \& Ouchi, A. (1986). Bull. Chem. Soc. Jpn, 59, 3495-3499.
Kurtz, S. K. \& Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3813.
Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21-38.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Wang, X. Q., Yu, W. T., Xu, D., Lu, M. K., Yuan, D. R. \& Lu, G. T. (2002). Acta Cryst. C58, m341-m343.
Yuan, D. R., Xu, D., Liu, M. G., Fang, Q., Yu, W. T., Hou, W. B., Bing, Y. H., Sun, S. Y. \& Jiang, M. H. (1997). Appl. Phys. Lett. 70, 544-546.
Zhang, G. H., Xu, D., Chow, Y. T., Lu, M. K., Wang, X. Q., Yuan, D. R., Chu, P. L., Ren, Q. \& Xu, X. G. (2004). Opt. Commun. 233, 425-430.

Zhou, M., Yu, W. T., Xu, D., Guo, S. Y., Lu, M. K. \& Yuan, D. R. (2000). Z. Kristallogr. 215, 425-426.
Zyss, J. \& Ledoux, I. (1994). Chem. Rev. 94, 77-105.

